Imaging haemodynamic changes related to seizures: Comparison of EEG-based general linear model, independent component analysis of fMRI and intracranial EEG
نویسندگان
چکیده
BACKGROUND Simultaneous EEG-fMRI can reveal haemodynamic changes associated with epileptic activity which may contribute to understanding seizure onset and propagation. METHODS Nine of 83 patients with focal epilepsy undergoing pre-surgical evaluation had seizures during EEG-fMRI and analysed using three approaches, two based on the general linear model (GLM) and one using independent component analysis (ICA): The results were compared with intracranial EEG. RESULTS The canonical GLM analysis revealed significant BOLD signal changes associated with seizures on EEG in 7/9 patients, concordant with the seizure onset zone in 4/7. The Fourier GLM analysis revealed changes in BOLD signal corresponding with the results of the canonical analysis in two patients. ICA revealed components spatially concordant with the seizure onset zone in all patients (8/9 confirmed by intracranial EEG). CONCLUSION Ictal EEG-fMRI visualises plausible seizure related haemodynamic changes. The GLM approach to analysing EEG-fMRI data reveals localised BOLD changes concordant with the ictal onset zone when scalp EEG reflects seizure onset. ICA provides additional information when scalp EEG does not accurately reflect seizures and may give insight into ictal haemodynamics.
منابع مشابه
Scalp and Intracranial EEG-fMRI in Epilepsy
Copyright: © 2013 Graan LAV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: AED: Antiepileptic Drugs; BOLD: Blood Oxygen Level Dependent; DMN: Default Mode Network; ECG: Electrocardiogra...
متن کاملIndependent component analysis of interictal fMRI in focal epilepsy: Comparison with general linear model-based EEG-correlated fMRI
The general linear model (GLM) has been used to analyze simultaneous EEG-fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of indepe...
متن کاملPattern Recognition of Brain Signals
The General Linear Model (GLM), has been used to analyse simultaneous EEG-fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of indep...
متن کاملContinuous EEG source imaging enhances analysis of EEG-fMRI in focal epilepsy
INTRODUCTION EEG-correlated fMRI (EEG-fMRI) studies can reveal haemodynamic changes associated with Interictal Epileptic Discharges (IED). Methodological improvements are needed to increase sensitivity and specificity for localising the epileptogenic zone. We investigated whether the estimated EEG source activity improved models of the BOLD changes in EEG-fMRI data, compared to conventional << ...
متن کاملMapping interictal epileptic discharges using mutual information between concurrent EEG and fMRI
OBJECTIVE The mapping of haemodynamic changes related to interictal epileptic discharges (IED) in simultaneous electroencephalography (EEG) and functional MRI (fMRI) studies is usually carried out by means of EEG-correlated fMRI analyses where the EEG information specifies the model to test on the fMRI signal. The sensitivity and specificity critically depend on the accuracy of EEG detection an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2010